Кинематический анализ углов вылета частиц, рождённых в реакциях распада

П.А. Макаров

VII Всероссийская научная конференция «Математическое моделирование и информационные технологии»

23-24 ноября 2023 г.

- 1. Введение
- 2. Нерелятивистский случай
- 3. Релятивистский случай
- 4. Обсуждение основных результатов
- 5. Заключение

Цели и задачи

Цель

Кинематическое исследование закономерностей направления вылета нерелятивистских и релятивистских дочерних частиц, рождённых в процессе распада.

Задачи

- Сформулировать и доказать теоремы, описывающие кинематику реакций распада в нерелятивистском и релятивистском случаях.
- Получить и проанализировать условия, позволяющие определять максимальные углы вылета рождённых частиц, наблюдаемые в л-системе.
- Определить связь между углами вылета частиц в *ц*-системе и соответствующими им углами, регистрируемыми в *л*-системе.
 Исследовать характерные особенности данной связи.

Введение

Определение распада и примеры

Определение 1

Распад — это процесс спонтанного превращения исходного ядра или частицы (называемых родительскими или материнскими) в несколько продуктов распада (порождённые или дочерние частицы).

Рассматрим распад материнской частицы с образованием только двух дочерних частиц, протекающий по схеме:

$$a_0 \rightarrow a_1 + a_2.$$
 (1)

Примеры

223
Ra $\rightarrow ^{209}$ Pb + 14 C, (2)

$$H \to Z + \gamma.$$
 (3)

Введение

Основные соглашения и обозначения

Полная энергия і-й частицы

$$E_i = W_i + T_i. \tag{4}$$

Системы отсчёта

- система отсчёта, связанная с лабораторией (*л*-система: масса *m*, энергия *E*, полярный угол θ, скорость *ν*, импульс **p** и т. п.);
- ► система центра инерции (*ц*-система: *m*, *E*^{*}, *v*^{*}, *p*^{*}).

Система единиц

Стандартная в КТП и ФЧ система единиц $\hbar = c = 1$.

Законы сохранения для реакции (1) в ц-системе

Закон сохранения энергии

$$W_0^* = E_1^* + E_2^*. (5)$$

Закон сохранения импульса

$$p_1^* = m_1 v_1^* = p_2^* = m_2 v_2^* = p^*.$$
 (6)

Связь скорости дочерней частицы с направлением её вылета в л-системе

Утверждение 1

Пусть в л-системе материнская частица движется со скоростью \mathbf{v}_0 . В этой же системе исследуемая дочерняя частица движется со скоростью \mathbf{v}_1 , а в ц-системе ей соответствует скорость \mathbf{v}_1^* . Тогда зависимость скорости дочерней частицы от направления её вылета в л-системе определяется согласно уравнению

$$v_0^2 + v_1^2 - 2v_0v_1\cos\theta = (v_1^*)^2.$$
(7)

Доказательство.

Результат (7) непосредственно следует из теоремы о сложении скоростей $\mathbf{v}_1 = \mathbf{v}_0 + \mathbf{v}_1^*$ и теоремы косинусов.

Графическое представление содержания утверждения 1

Рис. 1: Диаграммы скоростей для распада нерелятивистской частицы

Направления вылета дочерней частицы в л-системе

Следствие 1

Утверждение 1 приводит к возможности реализации двух ситуаций.

- 1. Скорость материнской частицы меньше собственной скорости дочерней частицы $v_0 < v_1^*$ (см. рис. 1а). В этом случае дочерняя частица может вылететь под любым углом $\theta \in [0, 2\pi]$.
- 2. Скорость первичной частицы больше собственной скорости вторичной частицы $v_0 > v_1^*$ (см. рис. 1b). При этом из рис. 1b видно, что независимо от угла θ^* частица в л-системе может вылететь только вперед, под углом $\theta \in [0, \theta_{max}]$, где максимальный угол θ_{max} определяется равенством

$$\sin\theta_{max} = \frac{v_1^*}{v_0}.$$
(8)

Доказательство.

Очевидно из анализа рис. 1.

П.А. Макаров

Кинематический анализ углов вылета

Связь углов вылета дочерней частицы в л- и ц-системах

Следствие 2

Связь между углами вылета дочерней частицы θ и θ^* в л- и ц-системах может быть записана в виде:

$$\cos\theta^* = -\frac{v_0}{v_1^*}\sin^2\theta \pm \cos\theta \sqrt{1 - \left(\frac{v_0}{v_1^*}\right)^2 \sin^2\theta}.$$
 (9)

Замечание 1

Как видно из рис. 1а для случая $v_1^* > v_0$ связь между θ^* и θ однозначна. При этом в (9) необходимо выбирать знак «+» перед корнем. Если $v_1^* < v_0$, то связь между θ^* и θ неоднозначна: каждому значению θ отвечают два значения θ^* (векторам \mathbf{v}^* , проведённым на рис. 1b из центра окружности в точки B или C отвечают два знака «±» перед корнем в уравнении (9).

Доказательство следствия 2

Доказательство.

Непосредственно из рис. 1 вытекает равенство

$$\operatorname{tg} \theta = \frac{v_1^* \sin \theta^*}{v_1^* \cos \theta^* + v_0}.$$
 (10)

Далее, выполняем серию преобразований

$$(v_1^* \cos \theta^* + v_0)^2 = (v_1^*)^2 (1 - \cos^2 \theta^*) \operatorname{ctg}^2 \theta.$$
(11)

$$(1 + \operatorname{ctg}^{2} \theta) \cos^{2} \theta^{*} + 2 \frac{v_{0}}{v_{1}^{*}} \cos \theta^{*} + \left(\frac{v_{0}}{v_{1}^{*}}\right)^{2} - \operatorname{ctg}^{2} \theta = 0.$$
 (12)

Последнее равенство — есть квадратное уравнение относительно $\cos \theta^*$, корнями которого и является (9).

Связь углов вылета дочерней частицы в л- и μ -системах в случае $v_0 < v_1^*$

Рис. 2: Связь между θ^* и θ в случае $v_0 < v_1^*$

П.А. Макаров

Кинематический анализ углов вылета

Связь углов вылета дочерней частицы в *л*- и *ц*-системах в случае $v_0 > v_1^*$

Рис. 3: Связь между θ^* и θ в случае $v_0 > v_1^*$

Кинематический анализ углов вылета

Следствие 3

Каковым бы ни был наблюдаемый в л-системе угол вылета θ вторичной частицы, в ц-системе ему могут соответствовать только значения $\theta^* \ge \theta$ (причём равенство имеет место только в тривиальном случае, когда распадается покоящаяся частица, а значит л- и ц-системы совпадают), но не $\theta^* < \theta$.

Доказательство.

Очевидно из рис. 2 и 3.

Релятивистский случай Сводка основных соотношений СТО

Релятивистский импульс и энергия

$$\mathbf{p} = \frac{m\mathbf{v}}{\sqrt{1-v^2}}, \quad E = \frac{m}{\sqrt{1-v^2}}.$$
 (13)

Скорость и импульс релятивистской частицы

$$\boldsymbol{\nu} = \frac{\mathbf{p}}{E}.\tag{14}$$

Связь энергии, импульса и массы

$$E^2 - p^2 = m^2. (15)$$

П.А. Макаров

Законы сохранения для реакции (1) в л-системе

Закон сохранения энергии

$$E_0 = \frac{m_0}{\sqrt{1 - v_0^2}} = E_1 + E_2.$$
(16)

Закон сохранения импульса

$$\mathbf{p}_0 = \frac{m_0 \mathbf{v}_0}{\sqrt{1 - v_0^2}} = \mathbf{p}_1 + \mathbf{p}_2.$$
(17)

Направление вылета дочерней частицы в л-системе

Теорема 1

Пусть E_1^* — это энергия одной из дочерних частиц в ц-системе, а E_1 и θ — её энергия и угол вылета (по отношению к \mathbf{v}_0) в л-системе. Тогда направление вылета θ искомой частицы определяется согласно уравнению

$$\cos\theta = \frac{E_1 - E_1^* \sqrt{1 - v_0^2}}{v_0 \sqrt{E_1^2 - m_1^2}}.$$
(18)

Доказательство теоремы 1

Доказательство.

Запишем формулы преобразования Лоренца для рассматриваемой частицы при переходе от μ - к *л*-системе S

$$E_{1} = \frac{E_{1}^{*} + v_{0}p_{1x}^{*}}{\sqrt{1 - v_{0}^{2}}}, \quad p_{1x} = \frac{p_{1x}^{*} + v_{0}E_{1}^{*}}{\sqrt{1 - v_{0}^{2}}}, \quad p_{1y} = p_{1y}^{*}, \quad p_{1z} = p_{1z}^{*}.$$
(19)

Путём несложных преобразований выразим E_1^* из (19)

$$E_1^* = \frac{E_1 - v_0 p_1 \cos \theta}{\sqrt{1 - v_0^2}}.$$
 (20)

Подставляя в последнее равенство p_1 согласно (15) и выражая соз θ приходим окончательно к (18), что и доказывает теорему.

Энергия дочерней частицы в л-системе

Теорема 2

Пусть для некой дочерней частицы известны её энергия E_1^* в ц-системе и угол вылета θ (по отношению к скорости \mathbf{v}_0 материнской частицы) в л-системе. Тогда энергия E_1 данной дочерней частицы в л-системе определяется согласно уравнению

$$\frac{(1-v_0^2\cos^2\theta)E_1^2-2E_1^*\sqrt{1-v_0^2}E_1+(1-v_0^2)(E_1^*)^2+m_1^2v_0^2\cos^2\theta=0.}{(21)}$$

Доказательство.

Для доказательства теоремы достаточно возвести в квадрат выражение (18), умножить результат на $v_0^2(E_1^2 - m_1^2)$ и выделить в яном виде множители при разных степенях E_1 .

Графическое представление содержания теорем 1 и 2

Рис. 4: Диаграммы импульсов для распада релятивистской частицы

Направления вылета дочерней частицы в л-системе

Следствие 4

Таким образом, теоремы 1 и 2 приводят к возможности двух ситуаций.

- 1. Скорость материнской частицы меньше собственной скорости дочерней частицы $v_0 < p_1^* / E_1^* = v_1^*$ (см. рис. 4а). В этом случае дочерняя частица может вылететь под любым углом $\theta \in [0, 2\pi]$.
- 2. Скорость материнской частицы больше собственной скорости дочерней частицы (т. е. $v_0 > v_1^*$). Тогда точка A на рис. 4b лежит вне эллипса, и при известном угле θ вектор \mathbf{p}_1 (а вместе с ним и энергия E_1) может иметь два различных значения. В этом случае из рис. 4b видно, что независимо от угла θ^* частица в л-системе может вылететь только вперед, под углом $\theta \in [0, \theta_{max}]$, где максимальный угол θ_{max} определяется равенством

$$\sin \theta_{max} = \frac{p_1^* \sqrt{1 - v_0^2}}{m_1 v_0}.$$
 (22)

Доказательство следствия 4

Доказательство.

Очевидно из построения рис. 4 и его анализа. Результат (22) получается из условия обращения в нуль дискриминанта квадратного уравнения (21), записанного с учётом (15).

Связь углов вылета дочерней частицы в л- и ц-системах

Следствие 5

Связь между углами вылета дочерней частицы θ и θ^* в л- и ц-системах в релятивистском случае имеет вид:

$$\cos\theta^* = -\frac{v_0}{v_1^*\sqrt{1-v_0^2}}\sin^2\theta \pm \cos\theta\sqrt{1-\frac{v_0^2}{(v_1^*)^2(1-v_0^2)}\sin^2\theta}.$$
(23)

Доказательство следствия 5

Доказательство.

Проводится аналогично доказательству следствия 2, и может быть выполнено с помощью формальной замены

$$v_0 \to rac{v_0}{\sqrt{1-v_0^2}},$$
 (24)

очевидной из геометрического построения на рис. 4, для которого

$$AO = \frac{v_0 E_1^*}{\sqrt{1 - v_0^2}},\tag{25}$$

что вместе с соотношением между импульсом, энергией и скоростью свободной релятивисткой частицы (14) окончательно приводит к результату (23).

Сравнение результатов расчёта максимального угла вылета

Рис. 5: θ_{max} как функция v_0 и v_1^*

Замечание 2

Схожесть областей $v_1^* > v_0$ на рис. 5а и 5b не означает равномерного распределения углов вылета дочерних частиц в л-системе.

П.А. Макаров

Сравнение результатов расчёта θ_{\max} для двух частных случаев

Рис. 6: Максимальный угол вылета дочерней частицы

П.А. Макаров

Кинематический анализ углов вылета

Связь углов вылета дочерней частицы в л- и μ -системах в случае $v_0 < v_1^*$

Рис. 7: Связь θ^* и θ в релятивистском случае для $v_0/v_1^*=8/10$

Резюме для случая $v_0 < v_1^*$

- 1. Следствия 2 и 5 дают абсолютно идентичные результаты только в области существенно нерелятивистских скоростей $v \lesssim 0.1$.
- 2. В области сравнительно небольших скоростей $[0.1, v_{0c}]$ следствия 2 и 5 дают качественно совпадающие зависимости $\theta^*(\theta)$, несколько отличающиеся количественно.
- Начиная с некоторой критической скорости v_{0c} материнской частицы, предсказания следствий 2 и 5 отличаются качественно.

Замечание 3

Величина критической скорости v_{0c} и отвечающий ей интервал "запрещённых углов" $[\theta_a, \theta_b]$ связаны неравенством

$$\frac{v_1^* \sqrt{1 - v_{0c}^2}}{v_{0c}} < \sin \theta_a, \tag{26}$$

вытекающим из условия отрицательности значений подкоренного выражения в (23). При этом $\theta_b = \pi - \theta_a$.

Связь углов вылета дочерней частицы в *л*- и *ц*-системах в случае $v_0 > v_1^*$

Рис. 8: Связь θ^* и θ в релятивистском случае при $v_0/v_1^* = 10/8$

Заключение

На основе кинематического подхода изучены некоторые особенности углов вылета дочерних частиц, рождённых в процессах распада.

- Сформулированы и доказаны одно утверждение и две основные теоремы. Получены и проанализированы пять следствий из них.
- 2. Определены максимальные углы вылета рождённых частиц, наблюдаемые в *л*-системе.
- 3. Установлена связь между углами вылета частиц в *ц*-системе и соответствующими им углами, регистрируемыми в *л*-системе.
- 4. Выяснено, что в случае v₀ > v₁^{*} дочерние частицы в л-системе наблюдаются вылетевшими только в пределах узкого конуса с раствором, направленным по ходу движения материнской частицы.
- 5. Обнаружено, что в существенно релятивистской и ультрарелятивистской областях дочерние частицы в л-системе в случае v₀ < v₁^{*} могут наблюдаться вылетающими в пределах двух конусов, направленных растворами по ходу и против хода движения материнской частицы.

Спасибо за внимание!

Приложение

Рассуждение для построения рис. 4

Согласно формулам преобразования Лоренца (19) компонента импульса дочерней частицы в *л*-системе выражается через величины, относящиеся к *ц*-системе, следующим образом:

$$p_{1x} = \frac{p_1^* \cos \theta^* + v_0 E_1^*}{\sqrt{1 - v_0^2}}, \quad p_{1y} = p_1^* \sin \theta^*.$$
 (27)

Исключая из последней системы θ^* , легко получить

$$p_{1y}^2 + \left(p_{1x}\sqrt{1-v_0^2} - v_0E_1^*\right)^2 = (p_1^*)^2.$$
 (28)

По отношению к переменным p_{1x} , p_{1y} выражение (28) представляет собой уравнение эллипса с полуосями $p_1^*/\sqrt{1-v_0^2}$, p_1^* и центром (точка O на рис. 4), смещённым на расстояние $v_0 E_1^*/\sqrt{1-v_0^2}$ от точки $\mathbf{p}_1 = 0$ (точка A на рис. 4).